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ML for climate-timescale atmospheric modeling

Potential benefits of ML climate modeling:

- Significantly reduced computational cost — large ensembles
- Capturing processes that traditional models can’t
- Make better use of existing observations

Two large challenges compared to weather modeling:

- Decadal to centennial stability
- Generalizing to unseen climate states



Types of ML climate models - pure ML

Examples - ACE, DLESyM

Key feature: autoregressive prediction
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Types of ML climate models - hybrid physics/ML

Example - NeuralGCM

Key feature: retaining dry dynamical core
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Types of ML climate models - generative

Example - cBottle

Key feature: no autoregression, directly predicts outputs from boundary conditions
(SST, time of year, etc.)
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Uniform SST warming experiments

- Standard benchmark for climate models
- Evaluates a model’s climate sensitivity and response to warming
- Easy to set up, rapid equilibration



Experimental setup

ML models tested: ACE, NeuralGCM, cBottle
Traditional reference model: AM4 (GFDL)

Control simulation: forced with monthly climatological SST and SIC from
1981-2014

Warming simulation: +2 K SST applied at every grid point



Control +2K minus

Surface temp. response s, cONtrol
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We expect

1. Polar amplification
2. Enhanced land warming




Control +2K minus
Precipitation ] control
We expect

1. ~3%/Kincrease in precip
2. Strongest changes at tropics




Precipitation

We expect

- “Wet-gets-wetter, dry-gets-drier”
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Upper level temp. response

We expect

- Upper tropospheric warming
amplification
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+2K minus
Upper level temp. response Control control
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+2K minus
Radiation Control control
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Conclusion and takeaways

- Uniform SST experiments remain a tractable benchmark for ML and
traditional GCMs alike

- ML models reproduce some key physical responses, particularly in precip.,
but struggle with others like land warming and radiative response



Conclusion and takeaways

- Uniform SST experiments remain a tractable benchmark for ML and
traditional GCMs alike

- ML models reproduce some key physical responses, particularly in precip.,
but struggle with others like land warming and radiative response

Big question for the field: Can we train a generalizable ML climate model
from exclusively historical data?

- Distilling physical laws from historical data
- In distribution vs. out of distribution



How should we test our ML models?

Group discussion



